
Journal of Sound and <ibration (2000) 235(4), 655}670
doi:10.1006/jsvi.2000.2933, available online at http://www.idealibrary.com on
A RECIPROCITY RELATION FOR FLUID-LOADED
ELASTIC PLATES THAT CONTAIN RIGID DEFECTS

R. V. CRASTER

Department of Mathematics, Imperial College of Science, ¹echnology and Medicine,
¸ondon S=7 2BZ, England

AND

D. P. WILLIAMSs

Division of ¹heoretical Mechanics, School of Mathematical Sciences, ;niversity of Nottingham,
Nottingham NG 7 2RD, England

(Received 24 August 1999, and in ,nal form 24 February 2000)

A reciprocity relation between the far"eld behaviour of the scattered "elds generated by
incident waves, either #exural plate waves, or incident from the #uid, upon rigid defects
embedded in a thin elastic, #uid-loaded, plate is derived. This reciprocity result is then
illustrated upon model problems for which the explicit solution can be determined and the
relation demonstrated. ( 2000 Academic Press
1. INTRODUCTION

The di!raction of acoustic, #exural or leaky waves from inhomogeneities embedded in
elastic plates or shells is important in any description of scattering by a #uid-loaded
structure. The waves scattered from these defects generate sound in the #uid, and scattered
#exural plate or leaky waves are also responsible for further sound generation via
interaction with other material inhomogeneities. Numerical and analytical studies of these
problems are often complicated by geometrical considerations and edge conditions that are
required at sharp structural changes. Our aim here is to derive, and apply, a reciprocity
relation that should be a useful tool for both checking results, and for reducing
computational e!ort in parametric studies.

Reciprocity theorems have a long history in acoustics, electromagnetism and elasticity
notably initiated by Helmholtz and Rayleigh amongst others. Many of these reciprocity
theorems involve two scattering problems found by interchanging the position of a source
and receiver; thus relations between the two states are deduced, and these are particularly
useful in structural acoustics, say, scattering from an elastic sphere or cylinder [1, pp. 376].

A closely related reciprocity result is often used in acoustics, and in a more complicated
guise in elasticity. In the latter case, several di!erent body waves (both shear and
compression), surface waves and mode conversion at interfaces often lead to complicated
analysis; it is well-worth having subsidiary results to act as check. If one is interested in
scattering by an obstacle, of arbitrary shape or cross-section, say, a crack or void, then
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reciprocity relations have been deduced for obstacles in an in"nite isotropic elastic domain
[2, 3], an elastic half-space [4}6] or coupled #uid-solid media [7]. Typically,
these reciprocity theorems are concerned with relating one aspect of the solution of one
problem to another aspect of a second problem. It is usual to explore how one relates
the scattered far"eld angular coe$cient (the directivity) associated with a scattered
cylindrical wave, or the amplitude of a scattered surface wave, that is generated by one type
of incident wave (the "rst problem) to the scattered far"eld coe$cient generated by another
incident wave (the second problem); the incident wave in isotropic elasticity could be either
plane compressional or shear body waves, surface Rayleigh waves or interfacial Stoneley
waves.

A typical relation would emerge from analyzing the scattered shear directivity, say,
generated by an incident plane compressional wave upon a defect to the scattered
compressional directivity generated by an incident plane shear wave. If we have a
half-space or joined elastic media then other relations occur with, and between, the
other waves of interest, that is, surface or interfacial waves. One can construct
several di!erent inter-relations each of which forms a useful non-trivial check upon
any numerical or analytical work. The theorems are usually quite general and hold
for obstacles of arbitrary number, orientation and shape, provided they are compact,
that is, in so far as the far"eld is concerned they are all clustered near to the origin.
These results are particularly useful for checking numerical or analytical results that
involve complicated subsidiary calculations, say, the evaluation of Green's functions
and solution of coupled integral equations for scattering by sub-surface cracks [7].
In structural acoustics there are several numerical techniques available, some based
upon solving integral equations [8, 9] and others based upon coupled boundary and
"nite elements (for instance, see reference [10]) and that could be used to tackle
problems for which the reciprocity relations provide a checking mechanism. As the
reciprocity formula arise from "nding equivalences between two di!erent scattering
problems, this can also substantially reduce the number of calculations in a parametric
study.

In a similar vein to the elastodynamic studies we now consider a compressible #uid
overlying a thin elastic plate; the plate contains embedded obstacles, cracks, or other
scatterers. A practical example might be a #uid-loaded elastic plate containing a "nite array
of parallel reinforcing ribs. This is in many ways analogous to elastic half-space problems in
that we now have both a compressional #uid wave (a body wave) and a #exural plate wave
(a surface wave). This elastic plates coupled to an overlying compressible #uid support
a subsonic #exural wave, and many studies (for instance, see references [11}14])
in structural acoustics are concerned with the mechanisms whereby model defects
scatter these waves; a substantial proportion of vibrational energy in a structure is
transmitted into a #uid via such interactions [5]. Our aim is to deduce the relation that
exists between the scattered far"eld directivity associated with the scattered cylindrical
wave in the #uid due to a #exural wave obliquely incident (in the plane occupied by the
plate) upon this collection of defects to the amplitude of a scattered #exural wave created by
an incoming #uid compressional plane wave also incident upon those defects. To
demonstrate the manner in which the relation should be applied we brie#y consider two
model geometries for which analytical solutions can be derived and the reciprocity relation
veri"ed.

The present analysis is designed to complement the so-called &&optical theorems''. These
arise from power balance considerations and are also useful in scattering problems. Recent
work along these lines in structural acoustics and #uid}solid coupled media are contained
in references [7, 16, 17].
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2. BASIC EQUATIONS

We consider a single elastic plate, with one-sided #uid loading, containing embedded
rigid strips, or line defects and joints; a typical geometrical con"guration is shown in
Figure 1.

Time-harmonic vibrations of frequency u are assumed, thus all physical variables have
an e~*ut dependence; this is considered understood, and is henceforth suppressed. The
problem is three dimensional with an inviscid, compressible #uid lying in the half-space
z'0 and !R(x, y(R. With this assumed time dependence the #uid pressure pL (x, y, z)
satis"es the Helmholtz equation in z'0,

($2#k2
0
)pL (x, y, z)"0, (2.1)

and k
0
the acoustic wavenumber, is related to the sound speed of the #uid, c

0
, via k

0
"u/c

0
.

The displacement in the z direction on the plate, g( (x, y), is related to the #uid pressure via
ou2g( (x, y)"pL

z
(x, y, 0).

The elastic plate lies in the plane z"0 and is potentially separated by a number, j, of
embedded rigid defects; these defects occupy domains D

j
where a

j
)x)b

j
. To model the

elastic plate we adopt the classical thin plate equation [1] in the form

B$4
h
g( (x, y)!mu2gL (x, y)"!pL (x, y, 0), (2.2)

where $2
h

is the horizontal Laplacian,

$2
h
,

L2

Lx2
#

L2

Ly2
. (2.3)

The plate separates #uid in the region z'0 from a vacuum in z(0. The bending sti!ness,
B, and mass per unit area, m, of the plate are related to the physical properties of the elastic
plate through B"Eh3/12(1!l2) and m"oh, with E, h, l, and o the Young's modulus,
plate thickness, the Poisson ratio and mass density of the elastic material respectively. In
order to minimize the number of parameters that occur later, we introduce the in vacuo
#exural wavenumber i

p
, &&Mach'' number X and #uid loading parameter e as

i
p
,

u2m

B
, e"

o
mA

B

mc2B
1@2

and X"A
k
0

i B
2
"

u
c o

me . (2.4)
Figure 1. The geometry of a general problem showing typical rigid defects, involving rigid strips and plates, and
line joints.

0 p 0



658 R. V. CRASTER AND D. P. WILLIAMS
Here X, the square of the ratio of the in vacuo plate wave speed to that of the #uid, provides
a dimensionless frequency and the #uid loading parameter, e, provides a frequency
independent measure of #uid loading.

At plate edges, joints, or defects various edge conditions can be adopted (as the
displacement is directly related to p

z
we give the conditions in terms of the latter quantity);

we take x"0 to be the edge of a rigid plate extending along 0(x(R, say, and then
x"0~ is the line along which the edge condition is to be applied, for instance:

Clamped edges: Both the displacement and rotation vanish at x"0~, i.e.,

pL
z
(0~, y, 0)"pL

zx
(0~, y, 0)"0. (2.5)

Hinged edges. The displacement and force are zero at x"0~, i.e.,

pL
z
(0~, y, 0)"0, A

L2

Lx2
#l

L2

Ly2B pL
z
(0~, y, 0)"0. (2.6)

2.1. NON-DIMENSIONALIZATION

To proceed, we "rst non-dimensionalize the equations and adopt the non-dimensional
space variable x8 "k

0
x based on the acoustic wavenumber; henceforth we drop the tilde and

hat decoration. For convenience, the pressure is scaled so that the amplitude of the incident
waves is unity.

The governing equation is now

A
L2

Lx2
#

L2

Ly2
#

L2

Lz2
#1B p(x, y, z)"0, (2.7)

subject to the non-dimensional thin plate equation

CX2A
L2

Lx2
#

L2

Ly2B
2
!1D

Lp

Lz
(x, y, 0)#

e
X

p (x, y, 0)"0 (2.8)

for all x on z"0 excluding x3D
j
. In addition, the scattered "eld decays as zPR. For

x3D
j
the rigid plate condition translates to p

z
"0.

2.2. INCIDENT WAVE STRUCTURE

Several di!erent incident wave"elds could be considered, incident #exural plate, leaky
and acoustic waves are the more common, although we could also treat &&end-"re'' waves
[11], and we brie#y discuss the #exural, leaky and acoustic waves.

2.2.1. Flexural waves

An elastic plate can support a #exural wave, of unit amplitude on the plate, that takes the
form

p(inc) (x, y, z)"exp [!(C2
1
!1)1@2z#im

1
x#iiy], (2.9)
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the superscript (inc) denotes that this is an incident wave. This surface wave decays
exponentially with distance into the #uid and is localized close to the plate. The total plate
wavenumber C

1
, de"ned from C2

1
"m2

1
#i2, is found from the positive real root (for C) of

the dispersion relation K(m) [1, p. 237; 18]:

K(m)"AC4(m)!
1

X2B!
e

X3

1

(C2(m)!1)1@2
. (2.10)

The total plate wavenumber C
1
is greater than unity and this indicates that the #exural plate

waves are subsonic relative to the acoustic wavespeed. Associated with the #exural plate
wave is an angle of propagation h

1
(see Figure 2) such that m

1
"C

1
cos h

1
and i"C

1
sin h

1
.

2.2.2. ¸eaky waves

Depending upon the precise choice of branch cuts for (C2(m)!)1@2 in equation (2.10) then
the dispersion relation K(m) has, in addition to two real solutions at $m

1
, complex roots

that are also potentially important. In particular, when the #uid loading is light, that is, the
dimensionless frequency is large, XA1, and the #uid loading parameter is small, e@1, then
the in vacuo #exural plate waves (which, as X'1, have supersonic velocities relative to the
acoustic wavespeed) are perturbed by the presence of the overlying #uid and shed energy
into the #uid along characteristic angles [12]. In terms of the dispersion relation these
waves emerge from complex roots, with small imaginary part, at m"$m

leaky
, where

m
leaky

&(X~1
j

!i2)1@2#
ie
j

4X2
j

(X~1
j

!i2)1@2 (1!X~1
j

)~1@2. (2.11)

The incident "eld of a leaky wave is then

p(inc) (x, y, z)"exp [!(C2
leaky

!1)1@2z#im
leaky

x#iiy]; (2.12)

here we take i real, and note that a leaky wave is a piece of the wave spectrum that can be
identi"ed explicitly, but cannot exist in isolation, the wave decays exponentially with both
Figure 2. The geometry of the problem and the incident wave "elds under consideration. In panel (a) the
obliquely incident #exural wave of section 2.2.1 is shown; the angle of incidence, h

1
, is the angle made between the

wavenumber vector and the horizontal normal to the plate junction (which lies along the line x"z"0). In
addition an incident leaky wave section 2.2.2 is also illustrated. In panel (b) an incident acoustic wave (section 2.2.3)
from the #uid, along an angle, h

a
, to the horizontal normal and an angle, /

a
, to the vertical normal of the plate

junction is shown together with the wave that would be re#ected from a defect-free elastic plate.
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distance into the #uid and distance along the plate; they are discussed in reference [12]. In
addition, if X'1/i2 then the leaky wave root no longer has the imaginary component, and
this can signi"cantly a!ect the scattered far "eld [19].

2.2.3. Acoustic plane wave

Alternatively, we could have incoming acoustic waves and associated angles of incidence
with this wave; one angle in the z"0 plane giving the angle of incidence on the plate
relative to the joint, and the other giving the angle of incidence within the #uid relative to
the z"0 plane. Thus, we de"ne an angle of incidence h

a
in the z"0 plane (on the plate) as

the angle subtended between the incoming wave and the x-axis and angle /
a
as the angle

subtended between the incoming wave and the plate (see Figure 2).
Taking the incident "eld to have unit amplitude then that acoustic wave has the form

p(inc) (x, y, z)"exp [(C2
a
!1)1@2z#im

a
x#iiy]. (2.13)

In terms of the angles of incidence we de"ne C2
a
"(m2

a
#i2)"cos2 /

a
(so the square root

terms is [C2
a
!1]1@2,!i sin/

a
), with m

a
"cos h

a
cos/

a
and i"sin h

a
cos/

a
; note the

wavenumber in the y direction, i has DiD(1 always, this is in contrast to the case of
incoming #exural plate waves, where i due to the subsonic nature of the #exural wave can
be greater than unity. In order to deduce a relation between the #exural and acoustic waves
we shall require i to be identical for both problems, that we restrict our attention to i(1.

Later in this paper, we shall require the solution for a plane wave re#ected from a defect
free elastic plate; this is shown in x'0 in Figure 2. In this regard, we de"ne a plate
re#ection coe$cient, R, as

R"

KI (m
a
)

K(m
a
)

with KM (m)"AC4(m)!
1

X2B#
e

X3

1

(C2(m)!1)1@2
(2.14)

and the re#ected "eld, denoted by a superscript (ref ), is

p(ref)(x, y, z)"R exp [!(C2
a
!1)1@2z#im

a
x#iiy]. (2.15)

Thus, for an acoustic wave incident upon a defect-free plate, the full "eld is

p (x, y, z)"p(inc) (x, y, z)#p(ref) (x, y, z). (2.16)

2.3. FARFIELD WAVE STRUCTURE

We assume the defects, ribs, joints or plates are all clustered within a non-dimensional
distance d of the origin, and that we observe the far "eld such that x, rAd.

The scattered "eld, denoted by the superscript (sc), falls into two distinguishable pieces in
the far"eld. Firstly, one generates scattered #exural plate waves that propagate to
xP$R, these are characterized by amplitude coe$cients H$:

p(sc)(x, y, z)&H$ exp [$im
1
x#iiy!(C2

1
!1)1@2z]. (2.17)

Secondly, we can also excite acoustic waves that propagate in the #uid. In the far"eld these
are cylindrical waves, and are better described in a cylindrical polar co-ordinate system
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(r, 0, y) whose axis lies along the line x"0 (x"r cos0, z"r sin0 ). These waves have the
far"eld form

p(sc)(r,0, y)&S
2

njr
G(0 ) e*jr~*n@4~*iy, (2.18)

characterized by an angular directivity G(0 ), where j"J1!i2 is the radial wavenumber
of the acoustic wave. For scattered cylindrical waves we require i(1; if i'1, these waves
are evanescent and there are no scattered acoustic waves in the far "eld (see references
[19, 20, pp. 280] for further details.) Equivalently, in order to excite acoustic waves, the
component of the #exural wave in the y direction must travel supersonically. To deduce our
reciprocity relation we restrict our attention to i(1. Additionally, if the #uid loading is
light we can distinguish a response due to a leaky wave; we attach amplitude coe$cients¸$

to this response and take.

p(sc)(x,y, z)&¸
$ exp [$im

leaky
x#iiy!(C2

leaky
!1)1@2z], (2.19)

as xP$R.
We assume that each defect does not vary spatially in the y direction, thus the

wavenumber in the y direction is unaltered during the scattering from a defect and this e*iy
dependence can be incorporated throughout. This is, we take

p(sc)(x, y, z)"p(sc)(x, z)e*iy (2.20)

with a similar form for the incident "elds, and henceforth we omit the e*iy term and consider
this exponential y dependence as understood.

Given a collection of defects on the plane z"0 with x3D"Z
j
D

j
then the scattered "eld

can be written down as an integral over D. The scattered pressure "eld is given in terms of
an unknown distribution of point forces along the elastic plate. This requires a Green's
function that follows from solving the Helmholtz equation with boundary condition

L(L
x
)pG

z
(x, z;x@)#M(L

x
)pG(x, z;x@)"d (x!x@) (2.21)

on z"0. The resulting solution is found as the inverse Fourier transform

pG (x, z;x@ )"!

1

2n P
C

exp [!im(x!x@)!(C2!1)1@2z]

(C2!1)1@2K(m)
dm . (2.22)

The path C in the inverse Fourier transform runs from !R to #R and is indented above
(below) and singularities occurring on the negative (positive) real axis. Thus, the scattered
"eld is

p(sc)(x, z)"PD [L(L
x{

)psc
z
(x@, 0)#M(L

x{
)p(sc) (x@, 0)]pG(x, z;x@) dx@ . (2.23)

Using L
x{

to denote the partial derivative with respect to x@, the operators L(L
x
) and M (L

x
)

are

L(L
x
)"(L2

x
#i2)2!1/X2, M(L

x
)"e/X3. (2.24)
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Each integral within equation (2.23) must be interpreted as an integral over a
j
(x(b

j
together with a contribution from the edges a

j
and b

j
, that is,

PD
j

[L(L
x{
)p(sc)

z
(x@, 0)#M(L

x{
)p(sc) (x@, 0)]pG(x, z;x@) dx@

,P
bj

aj

[L(L
x{
)p(sc)

z
(x@, 0)#M(L

x{
)p(sc)(x@, 0)]pG(x, z;x@) dx@

#pG(x, z;x@ )L3
x{

p(sc)
z

(x@, 0) Dbj
aj
!L

x{
pG(x, z; x@ )L2

x{
p(sc)
z

(x@, 0) Dbj
aj

(2.25)

#L2
x{

pG(x, z;x@ )L
x{

p(sc)
z

(x@, 0) Dbj
aj
!L3

x{
pG (x, z;x@ )p(sc)

z
(x@, 0) Dbj

aj

#2i2 [L
x{

pG(x, z;x@)p(sc)
z

(x@, 0) Dbj
aj
!pG(x, z;x@)L

x{
p(sc)
z

(x@, 0) Dbj
aj
].

We now substitute the Green's function (2.22) into equation (2.23) to deduce the far"eld
scattered pressure. Analyzing the asymptotic form of the Fourier integral that appears in
(2.23) using residues, or a saddle-point analysis, we explicitly identify the characteristic
far"eld coe$cients (2.17, 2.18, 2.19) as:

i (C2
1
!1)1@2K@(m

1
)H$

"PD [L(L
x{
)p(sc)

z
(x@, 0)#M(L

x{
)p(sc)(x@, 0)]eGim

1
x{ dx@, (2.26)

the prime on K@(m) denotes the di!erential with respect to m,

2iK(j cos 0)G(0)"PD [L(L
x{
)p(sc)

z
(x@, 0)#M(L

x{
)p(sc)(x@, 0)]e!ix @jcos 0{ dx@, (2.27)

and

i(C2
leaky

!1)1@2K@(m
leaky

)¸$

"PD [L(L
x{
)p(sc)

z
(x@, 0)#M(L

x{
)p(sc)(x@, 0)]eGim

leaky
x{ dx@. (2.28)

The domain D incorporates the edge and as in equation (2.25) the edge conditions are
included in these expressions. This is illustrated for a single joint in section 4.1.

3. THE RECIPROCITY RELATION

In this section, we extract a reciprocity relation between the scattered "elds generated by
the di!erent incident waves under consideration in this article. In order to achieve this we
use the reciprocity relation

P
S

[p(f)p(a)
ni
!p(a)p(f )

ni
] n

i
dS"0 (3.1)

(which follows from Green's theorem applied to :
V
(p(f)[+ 2#k2]p(a)!p(f) [+ 2#k2]p(a))

d<"0) for two independent states ( f ) and (a) (the choice of superscript will become
transparent) in a source-free domain bounded by a surface S (with outward pointing normal
n
i
), for which both states satisfy the Helmholtz equation. Taking the assumed y dependence
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and using this result in the x, z plane with S bounded by a semi-circular arc at in"nity and
running parallel to, and just above, the plate, furthermore,

PS

([L(L
x
)p(f)

ni
#M(L

x
)p(f)]p(a)

ni
![L(L

x
)p(a)

ni
#M (L

x
)p(a)]p(f)

ni
) n

i
dS"0, (3.2)

provided, that is, [L(L
x
)p(f,a)

z
#M (L

x
)p(f,a))]"0 as xP$R and p(f,a) decays at in"nity.

Furthermore, we require that the operatorsL and M contain only even derivatives of x; for
the plate theory used here they are de"ned in equation (2.24). Now we manipulate this.

Let state ( f ) be the scattered "eld due to an incoming #exural plate wave, equation (2.9),

p (f inc)(x, z)"exp [im
1
x!(C2

1
!1)1@2z]. (3.3)

and state (a) is that due to an incident acoustic wave together with its re#ection from an
unblemished elastic plate (2.16), that is,

p(a inc)(x, z)"exp [im
a
x#(C2

a
!1)1@2z]#R exp [im

a
x!(C2

a
!1)1@2z]. (3.4)

Both incident "elds have L(L
x
)p(f,a inc)

z
(x, z)#M(L

x
)p(f,a inc) (x, z)"0 on z"0. Thus,

relation (3.2) gives

PD [L(L
x
)p(f sc)

z
#M (L

x
)p(f sc)]p(a inc)

z
dx"PD[L(L

x
)p(a sc)

z
#M(L

x
)p(a sc)]p(f inc)

z
) dx, (3.5)

where we have used the rigid boundary condition p(sc)
z

#p(inc)
z

"0 on D. We have also
exploited the edge conditions (2.5) and (2.6); taking into account the exp (iiy) dependence
these translate to: clamped, p

z
(0~, 0)"0, p

zx
(0~, 0)"0; hinged, p

z
(0~, 0)"0, p

zxx
(0~,

0)"0. The direct relations with p
z
and its derivatives mean that these edge conditions can

be easily incorporated.
Inserting the respective incident "elds into equation (3.5), and furthermore noticing the

similarity to the H$ and G formulae, equations (2.26) and (2.27), yield

(C2
1
!1)K@ (m

1
)H(a)~(h

a
, /

a
)"

4e
X3

G(f) (0, h
1
). (3.6)

We have now appended some further decoration to the #exural wave amplitude H~ and
directivity G, this is to make it plain that this relation holds for speci"c angles of incidence,
angles of observation and types of wave incidence.

f H(a)~(h
a
,/

a
) is the amplitude of the scattered #exural wave travelling to x"!R due to

to an incoming plane wave, state (a), from h
a
, /

a
f G(f)(0

a
, h

1
) is the directivity due to an incident #exural wave travelling, state ( f ),

from x"!R. This travels along an angle h
1

to the x-axis; the directivity is evaluated at
angle 0:

0"n!cos~1C
1

j
cos h

a
cos/

aD. (3.7)

The wavenumber in the y direction, i, is identical for both incident waves; this leads to the

relation C
1
sin h

1
"sin h

a
cos/

a
, and we recall that j"J1!i2; if i"0, that is, normal
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a
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incidence then these formulae simplify with 0"n!/
a
. One then observes the directivity

along the same angle, given the de"nitions of these angles, upon which the acoustic wave in
state (a) is incoming; the e!ect of altering the angle of incidence (in the plate) of the #exural
wave is to remove this simple relation.

At this point it is worthwhile to draw the readers attention to the precise angular
behaviour in the x, z plane and a sketch of the two relations is shown in Figure 3.

4. ILLUSTRATIVE EXAMPLES

The main application of the reciprocity relation is in numerical studies; it is also valuable
for analytic work and we brie#y demonstrate the manner in which it can be applied for
a line joint or semi-in"nite plate.

4.1. A SINGLE LINE JOINT

A single line joint is probably the simplest example upon which to illustrate the
reciprocity relation as we have a single defect of vanishing width so that a

1
and b

1
are

0
~

and 0
`

respectively.
The far"eld coe$cients then involve the jumps in scattered "eld across the joint (denoted

by I J), for instance, the amplitude of the scattered #exural wave, H~ is

i(C2
1
!1)1@2K@(m

1
)H~"Ip(sc)

zxxx
(x@, 0)J!im

1
Ip(sc)

zxx
(x@, 0)J!m2

1
Ip(sc)

zx
(x@, 0)J#im3

1
Ip(sc

z
(x@, 0)J.

(4.1)

This is crucially dependent upon the edge conditions, for instance see references [21, 13].
Following that analysis, then for a clamped joint

p(sc)
z

(x, z)"!

1

2n P
C

(E
1
m#E

0
)

K(m)
exp [!imx!(C2!1)1@2 z] dm (4.2)

with constants E
1

and E
0

determined from the incident "eld. We now consider two states
( f ) and (a) as those due to incoming #exural and acoustic waves respectively. The constants
E
1

and E
0

take di!erent forms in both cases and we distinguish them as E (f,a)
0

and E (f,a)
1

.
Applying the edge conditions which are that the jump in p

z
and p

zx
across the joint are zero
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one "nds that

E (f,a)
0

"!A (f,a) C
1

2n P
C

dm
K (m)D

~1
"!

A(f,a)

I
0

, (4.3)

E (f,a)
1

"m(f,a)A (f,a) C
1

2n P
C

m2

K (m)
dmD

~1
"

m (f,a)A(f,a)

I
1

. (4.4)

The constants A(f,a) are

A(f)"(C2
1
!1)1@2, A(a)"(R!1) (C2

a
!1)1@2 (4.5)

and the m (f,a) are m (f)"m
1

and m(a)"m
a
. We have also de"ned I

q
[21] as

I
q
"

1

2n P
C

m2q

K(m)
dm, (4.6)

where the path C is de"ned following equation (2.22).
Asymptotic considerations of the inverse Fourier transform for p(sc) (x, z) (which follows

from equation (4.2)) give the far"eld coe$cients required for equation (3.6) as

H(a)~(h
a
, /

a
)"i

[E (a)
1

m
1
#E (a)

0
]

K@(m) (C2
1
!1)1@2

,i
(R!1) (C2

a
!1)1@2

K@(m
1
) (C2

1
!1)1@2

[m
a
m
1
I~1
1

!I~1
0

], (4.7)

G(f)(0, h
1
)"!i [!E (f)

1
j cos0#E (f)

0
]

(C2
1
!1)1@2

2K (j cos0 )

,!i
(C2!1)1@2

2K(j cos0 )
[m

a
m
1
I~1
1

!I~1
0

], (4.8)

for 0 given by equation (3.7). After substitution into equation (3.6) one sees that the
reciprocity relation holds.

Other edge conditions upon the joint can be considered, and the analysis is then more
complicated as the integrals which appear in an analogous manner to those in equation (4.8)
can be apparently divergent [21]. Nonetheless, one can pursue the analysis and obtain
similar results.

4.2. A SEMI-INFINITE RIGID PLATE

The reciprocity relation is valid even when the rigid defect covers the half-plane on z"0
for x'0,!R(y(R and we now turn to this slightly more involved example, that is, an
elastic plate on z"0 in x(0 connected to a co-planar rigid plate on x'0. This can be
solved using Fourier transforms and the Wiener}Hopf technique, for instance see reference
[18]. One can approach this either by constructing an integral equation by manipulating
equation (2.23), or directly from the governing equations and boundary conditions; we
follow the latter route.
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We de"ne the Fourier transform of the scattered pressure

P (m, z)"P
=

~=

p(sc)(x, z)e*mx dx"P
`

(m, z)#P
~

(m, z), (4.9)

where P
$

denote the half-range transforms of p(sc)(x, z):

P
`

(m, z)"P
=

0

p(sc)(x, z) e*mx dx P
~

(m, z)"P
0

~=

p(sc)(x, z) e*mx dx (4.10)

the same notation is used for the half-range transforms of p(sc)
z

(x, z) which are P
$z . The

inverse transform is de"ned by

p(sc)(x, z)"
1

2n P
C

P (m, z) e~*mxdm, (4.11)

where the path C is de"ned after equation (2.22). The subscripts # and ! attached to the
half-range transforms denote that these functions are analytic in the # and ! regions;
these denote the regions of the complex m-plane above and below C; we loosely refer to these
two regions as the &&upper'' and &&lower'' halves of the complex m-plane. In what follows, we
shall mainly deal with the transforms along the plate, z"0, and we shall shorten P

`
(m, 0) to

P
`
(m) henceforth, and similarly for the other half-range transforms on z"0.
We generate a functional relation between half-range transforms that are unknown. This

relation is then unravelled using the Wiener}Hopf technique to identify the unknowns and
deduce the full solution. Along the way we are required to satisfy the edge conditions; for
problems in structural acoustics these edge conditions are slightly awkward to incorporate.

The incident #exural and acoustic waves can be treated simultaneously: we let state ( f ) be
that associated with an incident #exural wave (2.9), and (a) be that associated with
an incident acoustic wave (2.16). Using the rigid boundary condition p(inc)

z
#p(sc)

z
"0 on

z"0 and x'0 then for the states ( f ) and (a) we have the relation, P (f,a)
`z

(m)"
iA(f,a)/(m#m(f,a))

`
. The terms involving the superscript ( f, a) take di!erent values depending

upon whether we are dealing with state ( f ) or state (a). The representation of P (f,a)
`z

(m) simply
state that the transform of psc

z
(x, 0) is known, and the subscript # we have attached to the last

term is to remind us that the pole at !m(f,a) is taken to lie in the plus region, and we must
indent the inversion contour, and take account of this in the analysis, accordingly.

The constants A(f,a) are given in equation (4.5) an the m(f,a) are again m (f)"m
1

and
m(a)"m

a
.

We follow the usual Wiener}Hopf recipe [22] and the functional equation emerges as

K(m)CP(f,a)
~z

(m)!
A (f,a)

i (m(f,a)#m)
`
D"CC4(m)!

1

X2D P (f,a)
`z

(m)#
e

X3
P (f,a)
`

(m)!R~(f,a) (m). (4.12)

This relates the transform of the unknown pressure on the rigid plate, P
`

(m), to the
transform of the unknown displacement of the elastic plate, e!ectively P

~z
(m); these are

clearly di!erent depending upon the incident "eld. The edge behaviour of the plates is
completely captured in the term

R~(m)"[p(sc)
zxxx

(0~, 0)!imp(sc)
zxx

(0~, 0)!(2i2#m2 )p(sc)
~

(0~, 0)#im (2i2#m2)p(sc)
z

(0~, 0)].

(4.13)
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Our most valuable player here is the Wiener}Hopf technique, in essence one separates the
functional equation into a piece that is analytic in the # region and a piece that is analytic
in the ! region. These two pieces are equal along a common line and therefore both are
equal to the same entire function E(m), using analytic continuation this is extended to the
whole complex m-plane. Edge behaviour is then used with Liouville's theorem to "x the form
of E(m).

Technically, we require the split of the function K(m) into a product of # and
! functions. That is, we require K(m)"K

`
(m)K

~
(m); this is discussed in detail in

references [19] and [14] so is not repeated here, splitting is most easily performed in terms
of some quadratures. It is worth mentioning that K

~
(#m)"K

`
(!m)). For our purposes

here it is only necessary to note that one can do the factorization and we proceed formally.
This factorization and subsequent rearrangement of the functional equation expresses the

equality of a# and ! function, and utilizing Liouville's theorem and an estimate of the
growth behaviour of the unknown transforms we may deduce that our entire function,
E (f,a)(m), is O(m) when DmDPR, for all edge conditions; this leads to the transform of the
unknown p

z
along the plate as

P (f,a)
~z

(m)"
E (f,a)
1

m#E (f,a)
0

K
~
(m)

#

A(f,a)

i (m(f,a#m)
`
C1!

K
`

(m (f,a))

K
~

(m) D . (4.14)

Both E (f,a)
0,1

are unknown and must be determined from the edge conditions; we shall
consider clamped and hinged cases. Hence, the scattered pressure "eld is ultimately

p (sc f,a)(x, z)"!

1

2n P
C
CE (f,a)

1
m#E (f,a)

0
!

A (f,a)K
`

(m(f,a) )

i (m#m (f,a))
`
D

]
exp [!(C2(m)!1)1@2z!imx]

K
~

(m) [C2(m)!1]1@2
dm (4.15)

and the far"eld coe$cients follow from asymptotic considerations of this integral.
Consequently, the coe$cients for incident waves ( f ) (#exural) and (a) (acoustic), are

H(f,a)~"

!iK
`

(m
1
)

(C2
1
!1)1@2K@(m

1
)CE (f,a)

1
m
1
#E (f,a)

0
!

A(f,a)K
`

(m (f,a))

i (m
1
#m(f,a) ) D , (4.16)

¸(f,a)~"

!iK
`

(m
leaky

)

(C2
leaky

!1)1@2K@(m
leaky

)CE (f,a)
1

m
leaky

#E (f,a)
0

!

A(f,a)K
`

(m (f,a))

i (m
leaky

#m(f,a))D (4.17)

and

G(f,a) (0)"
!i

2K
`

(j cos0 ) C!E (f,a)
1

j cos 0#E (f,a)
0

!

A(f,a)K
`

(m (f,a))

i (m(f,a)!j cos0 )D . (4.18)

If required, the coe$cients for incident leaky waves may be similarly deduced; they are
closely related to incident #exural waves replacing C

1
with C

leaky
in A(f) and m(f).

Clearly the terms G(f)(0, h
1
) and H(a)~(h

a
,/

a
) required for the reciprocity result (3.6)

appear similar, at least they have a similar structure, but we still have the edge conditions to
incorporate; it is at "rst sight unclear that these components too are correctly related.
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If we take the edge to be clamped, it transpires that E (f,a)
1

"E (f,a)
0

,0 and upon noting the
choice of 0 for the reciprocity relation is j cos0"!m

a
then the relation (3.6) is immediately

satis"ed. However, more complicated edge conditions have non-zero E1s associated with
them. In general, to satisfy relation (3.6) the constants must satisfy

A(f)K
`

(m(f) ) [E (a)
1

m(f)#E (a)
0

]"A(a)K
`

(m(a) ) [E (f)
1

m(a)#E (f)
0

]. (4.19)

If we now take the edge to have the hinged condition (2.6), these edge conditions are
incorporated by taking the limit in the Fourier transform P(f,a)

~z
(m) that mPR which after

inversion corresponds to xP0~. That is, we explicitly determine p
z
along the elastic plate

and then enforce the edge conditions.
To enforce the chosen edge condition we require the expansion of the split functionK

~
(m)

as mPR which is

K
~

(m)&m2#k
1
m#2 (4.20)

where k
1

is independent of m, and for our purposes is a constant found using quadratures.
Inserting this result into P (f,a)

~z
and inverting term by term to obtain that

p
z
(x, z)"p

0
#xp

1
#x2p

2
#2 (4.21)

for constants p
0
, p

1
and p

2
. This result is for the total pressure now and not only the

scattered piece of the pressure. On applying the hinged conditions we "nd that E (f,a)
1

"0
and use the equation

0"2p
2
!li2p

0
"!i [!E (f,a)

0
k
1
#iA(f,a)K

`
(m (f,a))] (4.22)

to determine that

E (f,a)
0

"

A(f,a)K
`

(m(f,a))

ik
1

(4.23)

and thus the constants are determined.
Substitution into equations (4.16) and (4.18) leads to the far"eld coe$cients

H(a)~(h
a
, /

a
)"!

K
`

(m
1
)K

`
(m

a
) (R!1) (C2

a
!1)1@2

(C2
1
!1)1@2K@(m

1
) A

1

k
1

!

1

(m
1
#m

a
)B (4.24)

and

G(f)(0, h
1
)"!

(C2
1
!1)1@2K

`
(m

1
)

2K
`

(j cos 0 ) A
1

k
1

!

1

(m
1
!j cos0 )B . (4.25)

Noting that the choice of 0 in equation (3.7) ensures that m
a
"!j cos 0, and some minor

manipulations, these too satisfy the reciprocity relations (3.6) and (4.19)

5. CONCLUDING REMARKS

A reciprocity relation has been identi"ed for rigid plates lying upon an in"nite elastic
plate that should, besides being of independent interest, be of value in numerical studies
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involving, say, arrays of rigid ribs, plates and other rigid defects; it provides a non-trivial
check. It therefore complements other results, such as extensions of the optical scattering
theorem [16, 23, 17]. The two analytic examples demonstrate how the result should be
applied.

In addition, the reciprocity result we have given can be generalized in a straightforward
manner to rigid plates on, say, a membrane, or rigid cylindrical shells on an elastic
cylindrical shell; the general methodology outlined here should be useful in those contexts.
However, the replacement of the rigid plate by an elastic plate (of di!ering material
properties to the plate which extends to in"nity) and higher order edge conditions leads to
further di$culties.

There are two additional reciprocity results, that is, involving two incident waves of the
same type, that is, both #exural waves or both acoustic, and then interrelating the scattering
coe$cients; the resulting relations are then obvious, so we have not given upon these cases.
Relations between #exural (or acoustic) waves and incident, scattered leaky waves can also
be deduced. For instance, if we have an incident leaky wave with the form (2.12) then the
amplitudes (2.17) and (2.19) are connected via

(C2
1
!1)K@(m

1
)H~(h

leaky
)"(C2

leaky
!1)K@ (m

leaky
)¸~(h

1
), (5.1)

where we take the two states to be

f H~ (h
leaky

) is the amplitude of the #exural wave travelling to x"!Rdue to an incoming
leaky wave from h

leaky
.

f ¸~(h
1
) is the amplitude of the leaky wave travelling to x"!Rdue to an incoming

#exural wave from h
1
.

ACKNOWLEDGMENTS

RVC and DPW are grateful to the EPSRC for providing funding via an Advanced
Fellowship and a Research Studentship respectively. It is a pleasure to thank Neil
Balmforth for useful conversations and his contributions to earlier joint work on this, and
related, subjects.

REFERENCES

1. M. C. JUNGER and D. FEIT 1986 Sound, Structures and their Interaction. Acoustic Society of
America, second edition.

2. T. H. TAN 1977 Journal of the Acoustical Society of America 61, 928}931. Reciprocity relations for
scattering of plane, elastic waves.

3. V. VARATHARAJULA 1977 Journal of Mathematics and Physics 18, 537}543. Reciprocity relations
and forward amplitude theorems for rigid inclusions.

4. C. C. MEI 1978 Journal of the Acoustical Society of America 64, 1514}1522. Extensions of some
identities in elastodynamics with rigid inclusions.

5. F. L. NEERHOFF 1980 =ave Motion 2, 99}113. Reciprocity and power-#ow theorems for the
scattering of plane elastic waves in a half space.

6. Z. M. ROGOFF 1993 M.Sc. ¹hesis, ;niversity of Manchester. Reciprocity relations between the
incident "eld and the mode-converted scattered far-"eld for compact obstacles in an elastic
half-space.

7. R. V. CRASTER 1998 Journal of Sound and <ibration 209, 343}372. Scattering by cracks beneath
#uid}solid interfaces.

8. P. O. MATTEI 1995 Journal of Sound and <ibration 179, 63}77. Sound radiation by ba%ed and
constrained plates.



670 R. V. CRASTER AND D. P. WILLIAMS
9. S. G. LLEWELLYN-SMITH and R. V. CRASTER 1999 =ave Motion 30, 17}41. Numerical and
asymptotic approaches to scattering problems involving "nite elastic plates in structural
acoustics.

10. R. JEANS and I. C. MATHEWS 1993 Journal of the Acoustical Society of America 94, 3473}3479.
A unique coupled boundary-element "nite-element method for the elastoacoustic analysis of
#uid-"lled thin shells.

11. P. R. BRAZIER-SMITH 1987 Proceedings of the Royal Society of ¸ondon A 409, 115}139. The
acoustic properties of two co-planar half-plane plates.

12. D. G. CRIGHTON 1979 Journal of Sound and <ibration 63, 225}235. The free and forced waves on
a #uid-loaded elastic plate.

13. M. S. HOWE 1994 Proceedings of the Royal Society of ¸ondon A 444, 555}571. Scattering of
bending waves by open and closed cracks and joints in a #uid-loaded elastic plate.

14. A. N. NORRIS and D. A. REBINSKY 1995 Journal of Sound and <ibration 191, 29}51. Line
admittance at the junction of two plates with and without #uid loading.

15. D. G. CRIGHTON 1988 Journal of Sound and<ibration 133, 1}27. The 1988 Rayleigh medal lecture:
#uid loading*the interaction between sound and vibration.

16. Y. P. GUO 1995 Proceedings of the Royal Society of ¸ondon A 451, 543}552. On sound energy
scattered by a rigid body near a compliant surface.

17. I. V. ANDRONOV and B. P. BELINSKIY 1998 Journal of the Acoustical Society of America 103,
673}682. Acoustic scattering on an elastic plate described by the Timoshenko model: contact
conditions and uniqueness of the solution.

18. D. G. CRIGHTON and D. INNES 1984 Philosophical ¹ransactions of the Royal Society of ¸ondon
A 312, 295}342. The modes, resonance and forced response of elastic structures under heavy #uid
loading.

19. D. P. WILLIAMS 1999 Ph.D. ¹hesis,;niversity of Nottingham. Scattering by wave-bearing surfaces
under #uid loading.

20. M. S. HOWE 1998 Acoustics of Fluids}Structures Interactions. Cambridge: Cambridge University
Press.

21. M. S. HOWE 1986 IMA Journal of Applied Mathematics 36, 247}262. Attenuation and di!raction
of bending waves at gaps in #uid loaded plates.

22. B. NOBLE 1958 Methods Based on the=iener}Hopf ¹echnique. Oxford: Pergamon Press.
23. A. N. NORRIS and D. A. REBINSKY 1995 Journal of the Acoustical Society of America 97,

2063}2073. Acoustic and membrane wave interaction at plate junctions.


	1. INTRODUCTION
	2. BASIC EQUATIONS
	Figure 1
	Figure 2

	3. THE RECIPROCITY RELATION
	Figure 3

	4. ILLUSTRATIVE EXAMPLES
	5. CONCLUDING REMARKS
	ACKNOWLEDGMENTS
	REFERENCES

